FCCD Determination of Ge Detectors at HADES

LEGEND Detector Characterisation Meeting August 2022 Abigail Alexander, Valentina Biancacci

Introduction

HPGe detectors have a dead layer:

- Dead Layer (DL) = region of no charge collection on surface of semiconductor detectors. A conductive layer, created by Lithium diffusion.
- Transition Layer (TL) = partial charge collection
- Full Charge Collection Depth (FCCD) = TL + DL
 - NB:TL is ignored at first order such that FCCD=DL

The DL, and hence active volume, determination is important because:

- The $0\nu\beta\beta$ half-life is a function of active mass
- Degraded events could mimic 0vββ signature

We estimate the DL empirically by comparing characterisation data of detectors exposed to known radioactive sources with MC simulations

Analysis Flow

Simulations:

g4simple GEANT-4 MC simulations of detector, test stand and radioactive source

DL Post Processing:

Position based weighting and removal of energy deposits to simulate different FCCD values

Analysis:

Compare post-processed MC of varying FCCDs with the data by constructing an FCCD sensitive observable: a gamma line count ratio \rightarrow infer best fit FCCD

Data:

HADES data: detectors exposed to ¹³³Ba and ²⁴¹Am (low energy spectrum→ FCCD sensitive)

HADES Data

	Source	Activity	Collimated?	Run time	Position	Material
³³ Ba	ba_HS4	II6 kBq	no	30 minutes	Top:81 and 198 mm	HD1000
²⁴¹ Am	am_HSI	4330 kBq	yes	5-6 hours	Top: <10mm	??
²⁴¹ Am	am_HS6	396 kBq	no	4-5 hours	Top: 198 mm	Acrylic

Am source (HS6)

Copper collimator

Acrylic source holder

G4simple Simulations

Components to simulate:

- Lead castle
- Aluminum alloy cryostat
 - Enriched germanium detector
 - Aluminium alloy detector holder
 - HD1000 wrap
 - Mylar foil (for BEGes)
- Acrylic source holder
 - Radioactive source and casing

Automation software legend-g4simple-simulation used for rapid generation of geometry files and simulations for each new detector

Resources:

- G4simple github: <u>https://github.com/legend-exp/g4simple</u>
- Legend-g4simple-simulation automation Github: <u>https://github.com/legend-exp/legend-g4simple-simulation</u>
- G4simple + automation LEGEND software tutorial: <u>https://indico.legend-exp.org/event/561/</u>

Post-Processing

This is also handled in the automation software legend-g4simple-simulation

Post-Processing:

- FCCD post processing on raw energy depositions
- 2. Sum of energy depositions to build event energies
- 3. Gaussian resolution smearing
- A. Takes the minimum distance between the event point and each vector of **n+**
- B. Gets the 'ChargeCollectionEfficiency' for this distance, considering a step function for the FCCD, so it can be equal to 0 or 1
- C. Does the same for the minimum distance between the event point and each vector of the **bore**
- D. Returns the minimum of the two
 ChargeCollectionEfficiency' values to be then multiplied by the energy deposited by the event

In the drawing, the minimum distance is **c** but, actually, the code returns the 'efficiency' of the distance **b** which is 0.

Analysis: ¹³³Ba

Analysis: ²⁴¹Am

Results: FCCDs

FCCDs from Ba-133 HS4 and Am-241 HS1

 FCCDs computed for all ICPCs characterised at HADES so far

Results: FCCDs

"V02160A": { "FCCD_ba": 0.6482393374830786, "FCCD_ba_err_up": 0.07417223259448869, "FCCD ba err low": 0.0750211846962957, "FCCD_ba_err_corr_up": 0.05369480229103729, "FCCD_ba_err_corr_low": 0.054699669962277264, "FCCD_ba_err_uncorr_up": 0.02739931161907294, "FCCD_ba_err_uncorr_low": 0.02726518198449912 "V02160B": { "FCCD_ba": 0.6561419698875735, "FCCD_ba_err_up": 0.06974623389459522, "FCCD ba err low": 0.07033450691017085. "FCCD_ba_err_corr_up": 0.05389790893996227, "FCCD ba err corr low": 0.054548776090944884, "FCCD_ba_err_uncorr_up": 0.02348693531262014, "FCCD_ba_err_uncorr_low": 0.023062544858269196, "FCCD am1": 0.6263494561576082. "FCCD_am1_err_up": 0.0451019017729406, "FCCD am1 err low": 0.0458627578253048, "FCCD_am1_err_corr_up": 0.033116763251631265, "FCCD_am1_err_corr_low": 0.033987746715172684, "FCCD_am1_err_uncorr_up": 0.011985138521309557, "FCCD_am1_err_uncorr_low": 0.011875011110132117 "V02162B": { "FCCD_ba": 0.6930170049523673, "FCCD_ba_err_up": 0.0706688594825533, "FCCD ba err low": 0.07087658725037682, "FCCD_ba_err_corr_up": 0.05347685257530732, "FCCD_ba_err_corr_low": 0.05373257234357265, "FCCD_ba_err_uncorr_up": 0.024326400510057855, "FCCD_ba_err_uncorr_low": 0.023425005864014525 "V02166B": { "FCCD_ba": 0.761995054280591,

- Full results with correlated and uncorrelated errors ready
 - Currently in a json file -> soon in a table

Ongoing work: TL Investigations

- Next steps: explore Transition Layer profiles for the best fit FCCDs to improve data/MC agreement
- Linear TL only is shown here, but can also try more complex profiles: e.g. sigmoidal

Ongoing work: TL Investigations - Th source

- Transition Layer effects are visible at the left tail of peaks, like the one at 2615 keV of the Th spectrum
- Linear TL models with different dead layer fractions (DLF) are compared to the data via the count ratio of the main peak

New work: DL Homogeneity - ICPC

New work: DL Homogeneity - BEGe

- Homogeneity top and lateral - not valid anymore after the FCCD growth
- How to correctly compare the results of first and second measurements?

New work: DL Homogeneity - BEGe

ICPC	First characterization					
	$\Delta FCCD \pm \sigma_{\Delta FCCD}$	$\delta FCCD_{TOP}$	$\delta FCCD_{LAT}$			
	[mm]	[mm]	[mm]			
BoooooB	0.01 ± 0.00	0.03	0.05			
B00032B	0.07 ± 0.01	0.03	0.02			
B00091B	0.02 ± 0.00	0.02	0.03			
BoooooD	0.01 ± 0.00	0.03	0.02			
B00002C	0.00 ± 0.00	0.01	0.03			
B00035B	0.03 ± 0.01	0.01	0.00			
B00061C	0.02 ± 0.00	0.02	0.05			
B00076C	0.00 ± 0.01	0.01	0.01			

ICPC	Second characterization					
	$\Delta FCCD \pm \sigma_{\Delta FCCD}$	$\delta FCCD_{TOP}$	$\delta FCCD_{LAT}$			
	[mm]	[mm]	[mm]			
BoooooB	-0.03 ± 0.02	0.01	0.01			
B00032B	-0.09 ± 0.02	0.04	0.02			
B00091B	-0.01 ± 0.02	0.01	0.03			
BoooooD	0.10 ± 0.02	0.04	0.06			
B00002C	-0.03 ± 0.02	0.05	0.05			
B00035B	-0.12 ± 0.02	0.04	0.04			
B00061C	0.04 ± 0.02	0.04	0.04			
B00076C	-0.02 ± 0.02	0.06	0.07			