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Why do we search for neutrinoless 𝛽𝛽 Decay?
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According to the Standard Model

● matter-antimatter symmetry

● energy ↔ particle + antiparticle 

● still, our universe is dominated by particles

There must be processes altering

● B = Nbaryons - Nanti-baryons 

● L = Nleptons  - Nanti-leptons  

● B - L  

What is matter? What are its fundamental blocks?
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What distinguishes particles from antiparticles?

What distinguishes neutrinos from antineutrinos?



𝜈

𝜈 move antiparallel to its spin

left-handed chirality -> weakly-interact creating particles

move parallel to its spin

right-handed chirality -> weakly-interact creating antiparticles

What distinguishes neutrinos from antineutrinos?
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moving direction

If they have no mass: 
helicity = chirality

Dell’Oro, Marcocci, Viel and Vissani
Adv.High Energy Phys. 2016 (2016) 2162659



But neutrinos are massive! 
In rest frame: helicity≠ chirality

     

     Dirac                         Majorana 

 There are two “non-interacting”  states….

…or a  neutrino can always interact creating both matter & antimatter

What distinguishes neutrinos from antineutrinos?
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If they have no mass: 
helicity = chirality

𝜈=𝜈

Dell’Oro, Marcocci, Viel and Vissani
Adv.High Energy Phys. 2016 (2016) 2162659

𝜈

𝜈
moving direction 𝜈𝜈



If neutrinos are Majorana, both chiralities are 
always present

● mechanisms to change L (and thus B-L) 

●  explain mystery of neutrino masses
… and why there are so small

Neutrino-antineutrino transformations
Majorana masses

● not the Standard Higgs mechanism!

● no need for tiny Yukawa couplings

● see-saw models can explain tiny masses  
by introducing heavy right-handed states

6Matteo Agostini (UCL)

moving direction



Schechter and Valle, 1982

The test: neutrinoless 𝛽𝛽 decay (0𝜈𝛽𝛽) 
● (A,Z) -> (A,Z+2) + 2
● 2 neutrons -> 2 into two protons (ΔB = 0)

● 2 electrons are emitted (ΔL = 2)

● direct violation of L and B-L
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Same diagram creates 𝛎↔𝛎 

A tiny, but non-zero Majorana mass
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A portal to new physics beyond the SM
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Particle

 Physics

Nuclear 
Physics

https://latex.codecogs.com/png.image?%5Cdpi%7B300%7D%7B%5CGamma%7D%5Cpropto&space;%5Cdfrac%7B1%7D%7BT_%7B1/2%7D%7D&space;%5Cpropto&space;G%5C,g%5E4&space;%5C,M%5E2&space;%5Cleft(%5Cdfrac%7B%5Cnu%7D%7B%5CLambda%7D%5Cright)%5En&space;


nuclear matrix element (NME)

A portal to new physics beyond the SM
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phase space factor hadronic matrix element

energy scale of BSM

Higgs vacuum expectation

https://latex.codecogs.com/png.image?%5Cdpi%7B300%7D%7B%5CGamma%7D%5Cpropto&space;%5Cdfrac%7B1%7D%7BT_%7B1/2%7D%7D&space;%5Cpropto&space;G%5C,g%5E4&space;%5C,M%5E2&space;%5Cleft(%5Cdfrac%7B%5Cnu%7D%7B%5CLambda%7D%5Cright)%5En&space;


A portal to new physics beyond the SM
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phase space factor hadronic matrix element nuclear matrix element (NME)

energy scale of BSM

Higgs vacuum expectation

Can be computed accurately

(even if sometime g is used to 
incorporate biases in NME calculations)

Requires calculations of :

● wavefunction overlap between 
initial and final states

● lepton-nucleus interaction

https://latex.codecogs.com/png.image?%5Cdpi%7B300%7D%7B%5CGamma%7D%5Cpropto&space;%5Cdfrac%7B1%7D%7BT_%7B1/2%7D%7D&space;%5Cpropto&space;G%5C,g%5E4&space;%5C,M%5E2&space;%5Cleft(%5Cdfrac%7B%5Cnu%7D%7B%5CLambda%7D%5Cright)%5En&space;


A portal to new physics beyond the SM
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Dim 5: Weinberg Operator Dim 9 Dim 7 

Deppisch, Graf, Iachello and Kotila, 
PRD 102 (2020) 9, 095016

energy scale of BSM

Higgs vacuum expectation

https://latex.codecogs.com/png.image?%5Cdpi%7B300%7D%7B%5CGamma%7D%5Cpropto&space;%5Cdfrac%7B1%7D%7BT_%7B1/2%7D%7D&space;%5Cpropto&space;G%5C,g%5E4&space;%5C,M%5E2&space;%5Cleft(%5Cdfrac%7B%5Cnu%7D%7B%5CLambda%7D%5Cright)%5En&space;


A generic search for ultrahigh-energy BSM physics
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Complementary to current and 
future accelerators

T1/2 is proportional to the 
energy scale, similarly to the 

collision energy

Generic search: a signal can 
manifest at any time

Energy scales probed by 
next generation experiments

Deppish, Graf, Iachello and Kotila
PRD 102 (2020) 9, 095016



Light neutrino exchange - Propagator
Parameter connected to neutrino mixing 

probabilities, masses and complex phases
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inverted mass ordering 

normal mass 
ordering 



Light neutrino exchange
Nuclear Matrix Elements (NMEs)
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● “the worst eNeMiEs” for 0𝜈𝛽𝛽 decay hunters

● many-body methods: NSM, EDF, QRPA and IBM 

● recently recognized new contact term due 
exchange of high-energy light neutrinos

● first ab-initio methods (fixing gA issue?)

 

M.A., Benato, Detwiler, Menéndez and Vissani
arXiv:2202.01787

https://doi.org/10.48550/arXiv.2202.01787
https://doi.org/10.48550/arXiv.2202.01787


Best Today 
(T1/2 > 1026 yr)

Best Nex Gen
(T1/2 > 1027 -- 1028 yr)

Discovery odds: inverted ordered neutrinos
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S. Elliot, 2021

1940-2020

M.A., Benato, Detwiler, Menéndez and Vissani
PRC 104, L042501



Discovery odds: normal ordered neutrinos

M.A., Benato and Detwiler
 PRD 96, 053001 (2017)

Not equiprobable parameter space: random 
phases favors large m𝛽𝛽 values. 
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Cosmology surveys (DESI/EUCLID) will soon 
measure  

Up to 50% discovery power

next-gen goal

0𝜈𝛽𝛽 signal 

in next gen 

if Σ~ 0.1 eV

M.A., Benato, Detwiler, Menéndez and Vissani 
arXiv:2202.01787

https://doi.org/10.48550/arXiv.2202.01787
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How to discover a decay with T1/2>1026 yr

1. observe hundreds moles of atoms per years

2. identify even a single decay!

3. full control on background processes able to mimic the signal

Key parameters: exposure Ɛ (mol yr) and  background Β (events/mol/yr)

B=0:  T1/2 sensitivity ~ Ɛ                  B>0:  T1/2 sensitivity ~ sqrt(Ɛ/B)
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completed running
in preparation
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Recent and future experiments

M.A., Benato, Detwiler, Menéndez and Vissani 
arXiv:2202.01787
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ββ decaying Isotopes
9 potential isotopes:

● naturally abundant

● enrichment cost

● decay rate proportional to (Q-value)5

● Favorable NME and phase space factors

No  “best” isotope

The possible detection techniques compensate 
for unfavorable parameters
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Signal & Background
Tagging 0𝜈𝛽𝛽 decay events:

● two-electron summed energy = Q-value

● two-electron event topology

● (gamma-rays from de-excitation) 

● (daughter isotope) 

Backgrounds:

● cosmic-ray induced 

● U/Th decay chains

● neutrons

● solar neutrinos

● 2vbb decay (only irreducible background)

Multivariate background discrimination:

● non uniform event rate in time or space 

● spatially extended event topology

● particle identification 

● energy (only way to mitigate 2vbb)
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2n → 2p + 2e- + 2𝜈



Ge Semiconductor detectors 
(76Ge)

Xe Time Projection 
Chambers (136Xe)

Large Liquid scintillator detectors 
(130Te,136Xe)

Cryogenic Calorimeters 
(100Mo, 130Te)

The longest-standing 
technology used for 

0vbb-decay searches 

Used for first real-time 
observation of 2vbb 

decay. At the forefront 
since then.

The most successful 
departure from the 
“source=detector” 

paradigm

The most versatile types 
of detectors for rare 

events searches
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pCDR ready, world 
leading sensitivity

@ SNOLAB 

EXO-200 @ WIPP

● Xe VUV scintillation light and ionization 
electron drift -> 3D reconstruction

● background decreasing with distance from 
surface, 214Bi and 222Rn remain problematic 

● R&D to tag 0𝜈𝛽𝛽 decay daughter isotope

Xe time projection chambers
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● scintillator loaded with target isotope

● scintillation photons detected by PMTs

● photon number and arrival time gives 
event energy and position

● self-shielding and fiducialization

KamLAND-Zen-800 @Kamioka

● 750 kg of enriched Xe in nylon balloon

● backgrounds: 2vbb, cosmogenic, solar 
neutrinos, Bi on balloon

● next phase: improved resolution and 
purer scintillator

Large liquid scintillator detectors
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2203.02139 

● 1.3 t of natural Te

● 0.5% loading

● filled with scintillator

● next Te loading

● next phase: 6.6 t of 
Te, 2.5% loading

SNO+ @ SNOLAB

https://arxiv.org/abs/2203.02139


Cryogenic calorimeters
● temperature variation and scintillation light
● particle identification and good resolution
● array of isotopically enriched crystals 

operated at ~10 mK

24Matteo Agostini (UCL)

CUORE @ LNGS

particle identification

pCDR ready, world 
leading sensitivity



Discovery power of the field
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M.A., Benato, Detwiler, Menéndez and Vissani 
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Scenario 1: signal just beyond current limits

● L200, KZ-800, SNO+ discover it

● L1000, nEXO, CUPID  measures rate

● superNEMO studies  decay kinematic 

● kinematic & multi-isotope data -> decay mechanism

Scenario 2: weakest signal for inverted ordered neutrinos

● L1000,  nEXO, CUPID discover it

● follow-up experiments needed to measure properties

Scenario 3: signal even weaker or absent

● need to design more sensitive experiments

Interplay with oscillation experiments and cosmology can 
also lead to theory breakthroughs

SuperNEMO Demonstrator @ Modan

Where are we heading?
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Distorsions on 2vbb energy distribution

● massive & massless bosons (Majorons)
● violation of fundamental principles

○ Lorentz invariance
○ Pauli exclusion principle
○ CPT symmetry.

● exotic currents
● light exotic fermions (e.g. sterile neutrinos)
● Z2-odd fermions or other dark matter 

candidates
● ….

Many other BSM discovery opportunities 
Excess of events with specific energies or timing:

● B-violating tri-nucleon decay
● charge-violating electron decay
● WIMPS
● axions
● inelastic boosted dark matter
● fermionic dark matter
● fractional-charge
● lightly ionizing particles
● …

27Matteo Agostini (UCL)



Conclusions
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The discovery of 0𝜈𝛽𝛽 decay would lead to a new “standard model”, with a new 
interpretation of the fundamental symmetries and the matter-antimatter concept

Advancements in nuclear theory are laying the groundwork to connect the nuclear 
decay with the underlying particle physics

A worldwide, multi-isotope experimental program is exploring an exciting parameter 
space, where a signal can be around the corner


