Toward the Discovery of Matter Creation with Neutrinoless $\beta\beta$ Decay

Theory & Experiment

Matteo Agostini

STFC Ernest Rutherford Fellow at UCL

LEGEND, UK Open Workshop, 31/03/2022, UCL

Most of the material taken from <u>M.A., Benato, Detwiler, Menéndez and Vissani, arXiv:2202.01787</u>

Science and Technology Facilities Council

Why do we search for neutrinoless $\beta\beta$ Decay?

C:1. What are the fundamental particles and fields?

C:4. What is the nature of dark matter and dark energy?

C:7. Are there new phases of strongly interacting matter?

C:2. What are the fundamental laws and symmetries of physics?

C:5. How do quarks and gluons form hadrons?

C:8. Why is there more matter than antimatter? C:3. What is the nature of spacetime?

C:6. What is the nature of nuclear matter?

C:9. What will precision measurements of the Higgs boson reveal about the Universe?

What is matter? What are its fundamental blocks?

According to the Standard Model

- matter-antimatter symmetry
- energy \leftrightarrow particle + antiparticle
- still, our universe is dominated by particles

There must be processes altering

- $B = N_{baryons} N_{anti-baryons}$
- $L = N_{leptons} N_{anti-leptons}$

What distinguishes particles from antiparticles?

What distinguishes neutrinos from antineutrinos?

What distinguishes neutrinos from antineutrinos?

If they have no mass: helicity = chirality

move antiparallel to its spin

left-handed chirality -> weakly-interact creating particles

move parallel to its spin

right-handed chirality -> weakly-interact creating antiparticles

Dell'Oro, Marcocci, Viel and Vissani Adv.High Energy Phys. 2016 (2016) 2162659

4

What distinguishes neutrinos from antineutrinos?

If they have no mass: helicity = chirality

But neutrinos are massive! In rest frame: helicity≠ chirality

There are two "non-interacting" states....

...or a neutrino can always interact creating both matter & antimatter

Dell'Oro, Marcocci, Viel and Vissani Adv.High Energy Phys. 2016 (2016) 2162659

Neutrino-antineutrino transformations

If neutrinos are Majorana, both chiralities are always present

Majorana masses

- mechanisms to change L (and thus B-L)
- explain mystery of neutrino masses ... and why there are so small

- not the Standard Higgs mechanism!
- no need for tiny Yukawa couplings
- see-saw models can explain tiny masses by introducing heavy right-handed states

The test: neutrinoless $\beta\beta$ decay $(0\nu\beta\beta)$

- (A,Z) -> (A,Z+2) + 2
- 2 neutrons -> 2 into two protons ($\Delta B = 0$)
- 2 electrons are emitted ($\Delta L = 2$)
- direct violation of L and B-L

Same diagram creates $\mathbf{v} \leftrightarrow \overline{\mathbf{v}}$

A tiny, but non-zero Majorana mass

A portal to new physics beyond the SM

 $\Gamma \propto \frac{1}{T_{1/2}} \propto G g^4 M^2 \left(\frac{\nu}{\Lambda}\right)^n$ Particle **Physics**

Nuclear Physics

A portal to new physics beyond the SM

A portal to new physics beyond the SM

(even if sometime **g** is used to incorporate biases in NME calculations)

 wavefunction overlap between initial and final states

lepton-nucleus interaction

Final
$$|\mathcal{L}_{ ext{leptons-nucleons}}|$$
 Initial $angle=\langle$ Final $|\int dx\, j^{\mu}(x)J_{\mu}(x)|$ Initial $angle$

Deppisch, Graf, Iachello and Kotila, PRD 102 (2020) 9, 095016

A portal to new physics beyond the SM

Matteo Agostini (UCL)

u

A generic search for ultrahigh-energy BSM physics

Complementary to current and future accelerators

T_{1/2} is proportional to the energy scale, similarly to the collision energy

Generic search: a signal can manifest at any time

Deppish, Graf, lachello and Kotila PRD 102 (2020) 9, 095016

Light neutrino exchange - Propagator

Parameter connected to neutrino mixing probabilities, masses and complex phases

T

$$m_{\beta\beta} = \left| \sum_{i} U_{ei}^2 m_i \right|$$

Light neutrino exchange Nuclear Matrix Elements (NMEs)

$$egin{aligned} rac{1}{T_{1/2}} &= G\,g_A^4 \left(M_{ ext{light}}^{0
u}
ight)^2 \left(rac{m_{etaeta}}{m_e}
ight)^2 \ & M_{light}^{0
u} &= M_{long}^{0
u} + M_{short}^{0
u} \end{aligned}$$

- "the worst e**N**e**M**i**Es**" for $0\nu\beta\beta$ decay hunters
- many-body methods: NSM, EDF, QRPA and IBM
- recently recognized new contact term due exchange of high-energy light neutrinos
- first ab-initio methods (fixing g_A issue?)

Discovery odds: inverted ordered neutrinos

Discovery odds: normal ordered neutrinos

Not equiprobable parameter space: random phases favors large $m_{\beta\beta}$ values.

Cosmology surveys (DESI/EUCLID) will soon measure $\Sigma = \sum_i m_i$

How to discover a decay with $T_{1/2}$ > 10²⁶ yr

- 1. observe hundreds moles of atoms per years
- 2. identify even a single decay!
- 3. full control on background processes able to mimic the signal

Key parameters: exposure E (mol yr) and background B (events/mol/yr)

$$N_{0\nu\beta\beta} = \frac{\ln 2 \cdot N_A \cdot \mathcal{E}}{m_a \cdot T_{1/2}}$$
 and $N_{bkg} = \mathcal{B} \cdot \mathcal{E}$

B=0: $T_{1/2}$ sensitivity ~ **E** B>0: $T_{1/2}$ sensitivity ~ sqrt(**E**/B)

Recent and future experiments

M.A., Benato, Detwiler, Menéndez and Vissani arXiv:2202.01787

ββ decaying Isotopes

9 potential isotopes:

- naturally abundant
- enrichment cost
- decay rate proportional to (Q-value)⁵
- Favorable NME and phase space factors

No "best" isotope The possible detection techniques compensate for unfavorable parameters

Isotope	Daughter	$Q_{etaeta}{}^{\mathbf{a}}$	$f_{\rm nat}{}^{\rm b}$	$f_{\rm enr}{}^{\rm c}$
		$[\mathrm{keV}]$	[%]	[%]
^{48}Ca	$^{48}\mathrm{Ti}$	4267.98(32)	0.187(21)	16
$^{76}\mathrm{Ge}$	$^{76}\mathrm{Se}$	2039.061(7)	7.75(12)	92
82 Se	82 Kr	2997.9(3)	8.82(15)	96.3
$^{96}\mathrm{Zr}$	^{96}Mo	3356.097(86)	2.80(2)	86
^{100}Mo	100 Ru	3034.40(17)	9.744(65)	99.5
116 Cd	116 Sn	2813.50(13)	7.512(54)	82
$^{130}\mathrm{Te}$	130 Xe	2527.518(13)	34.08(62)	92
136 Xe	136 Ba	2457.83(37)	8.857(72)	90
150 Nd	$^{150}\mathrm{Sm}$	3371.38(20)	5.638(28)	91

Signal & Background

Tagging $0\nu\beta\beta$ decay events:

- two-electron summed energy = Q-value
- two-electron event topology
- (gamma-rays from de-excitation)
- (daughter isotope)

Backgrounds:

- cosmic-ray induced
- U/Th decay chains
- neutrons
- solar neutrinos
- 2vbb decay (only irreducible background)

Multivariate background discrimination:

- non uniform event rate in time or space
- spatially extended event topology
- particle identification
- energy (only way to mitigate 2vbb)

Ge Semiconductor detectors Xe Time Projection (⁷⁶Ge) Chambers (¹³⁶Xe)

The longest-standing technology used for Ovbb-decay searches Used for first real-time observation of 2vbb decay. At the forefront since then.

Large Liquid scintillator detectors (¹³⁰Te,¹³⁶Xe)

The most successful departure from the "source=detector" paradigm

Cryogenic Calorimeters (¹⁰⁰Mo, ¹³⁰Te)

The most versatile types of detectors for rare events searches

EXO-200 @ WIPP

Xe time projection chambers

- Xe VUV scintillation light and ionization electron drift -> 3D reconstruction
- background decreasing with distance from surface, ²¹⁴Bi and ²²²Rn remain problematic
- R&D to tag $0\nu\beta\beta$ decay daughter isotope

Experiment	m_{tot}	$f_{ m enr.}$	Phase	Readout
	[kg]	[%]		
EXO-200	161	81	liquid	LAPPDs + wires
nEXO	5109	90	liquid	electrode tiles $+$ SiPM s
NEXT-100	97	90	gas	SiPMs + PMTs
NEXT-HD	1100	90	gas	SiPMs + PMTs
PandaX-III-200	200	90	$_{\mathrm{gas}}$	Micromegas
PandaX-III-1K	1000	90	gas	Micromegas
LZ-nat	7000	9	dual-phase	\mathbf{PMTs}
LZ-enr	7000	90	dual-phase	\mathbf{PMTs}
DARWIN	39300	9	dual-phase	\mathbf{PMTs}

Large liquid scintillator detectors

- scintillator loaded with target isotope
- scintillation photons detected by PMTs
- photon number and arrival time gives event energy and position
- self-shielding and fiducialization

Matteo Agostini (UCL)

KamLAND-Zen-800 @Kamioka

- 750 kg of enriched Xe in nylon balloon
- backgrounds: 2vbb, cosmogenic, solar neutrinos, Bi on balloon
- next phase: improved resolution and purer scintillator

 $T_{1/2}^{0\nu} > 2.3 \times 10^{26} \text{ yr at } 90\% \text{ C.L.}$

- 1.3 t of natural Te
- 0.5% loading
- filled with scintillator
- next Te loading
- next phase: 6.6 t of Te, 2.5% loading

Cryogenic calorimeters

- temperature variation and scintillation light
- particle identification and good resolution
- array of isotopically enriched crystals operated at ~10 mK

Experiment	Crystal	m_{tot}	f_{enr}
		[kg]	[%]
CUORE	$^{\rm nat}{ m TeO_2}$	742	34^{a}
CUPID-0	$\mathrm{Zn}^{\mathrm{enr}}\mathrm{Se}$	9.65	96
CUPID-Mo	${\rm Li_2}^{\rm enr}{\rm MoO_4}$	4.16	97
CROSS	${\rm Li_2}^{\rm enr}{\rm MoO_4}$	8.96	98
CUPID	${\rm Li_2}^{\rm enr}{\rm MoO_4}$	472	≥ 95
AMoRE	${\rm Li_2}^{\rm enr}{\rm MoO_4}$	200	96

CUORE @ LNGS

pCDR ready, world leading sensitivity **CUPID**

Discovery power of the field

M.A., Benato, Detwiler, Menéndez and Vissani arXiv:2202.01787

Where are we heading?

Scenario 1: signal just beyond current limits

- L200, KZ-800, SNO+ discover it
- L1000, nEXO, CUPID measures rate
- superNEMO studies decay kinematic
- kinematic & multi-isotope data -> decay mechanism

Scenario 2: weakest signal for inverted ordered neutrinos

- L1000, nEXO, CUPID discover it
- follow-up experiments needed to measure properties

Scenario 3: signal even weaker or absent

• need to design more sensitive experiments

Interplay with oscillation experiments and cosmology can also lead to theory breakthroughs

*m*_{ββ} [meV]

26

Many other BSM discovery opportunities

Distorsions on 2vbb energy distribution

- massive & massless bosons (Majorons)
- violation of fundamental principles
 - Lorentz invariance
 - Pauli exclusion principle
 - CPT symmetry.
- exotic currents
- light exotic fermions (e.g. sterile neutrinos)
- Z₂-odd fermions or other dark matter candidates

Excess of events with specific energies or timing:

- B-violating tri-nucleon decay
- charge-violating electron decay
- WIMPS
- axions
- inelastic boosted dark matter
- fermionic dark matter
- fractional-charge
- lightly ionizing particles
- ...

The discovery of $0\nu\beta\beta$ decay would lead to a new "standard model", with a new interpretation of the fundamental symmetries and the matter-antimatter concept

Advancements in nuclear theory are laying the groundwork to connect the nuclear decay with the underlying particle physics

A worldwide, multi-isotope experimental program is exploring an exciting parameter space, where a signal can be around the corner